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Abstract. Memory corruption attacks may lead to complete takeover
of systems. There are numerous works offering protection mechanisms
for this important problem. But the security guarantees that are offered
by most works are only heuristic and, furthermore, most solutions are
designed for protecting the local memory. In this paper we initiate the
study of provably secure remote memory attestation; we concentrate on
provably detecting heap-based overflow attacks and consider the setting
where we aim to protect the memory in a remote system. We present
two protocols offering various efficiency and security trade-offs (but all
solutions are efficient enough for practical use as our implementation
shows) that detect the presence of injected malicious code or data in
remotely-stored heap memory. While our solutions offer protection only
against a specific class of attacks, our novel formalization of threat models
is general enough to cover a wide range of attacks and settings.

1 Introduction

Memory corruption attacks are among the most common techniques used to
take control of arbitrary programs. These attacks allow an adversary to exploit
running programs either by injecting their own code or diverting program’s exe-
cution, often giving the adversary complete control over the compromised pro-
gram. While this class of exploits is classically embodied in the buffer overflow
attack, many other instantiations exist, including use-after-free vulnerabilities
and heap overflow. The latter is the focus of our work. Without question, this
problem is of great importance and has been extensively studied by the security
community.

Existing solutions (such as Stack and heap canaries [14,17,19,31] or address
space layout randomization (ASLR) [27,37], etc.) vary greatly in terms of secu-
rity guarantees, performance, utilized resources (software or hardware-based),
etc. While these techniques are implemented and deployed in many systems to
prevent a number of attacks in practice, their constructions are only appropriate
in the context of local systems: for example, an authority checking the integrity
of heap canaries, has to monitor every single step of the program’s execution.
However, this requirement is making the existing heap-based protection schemes
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hardly applicable to remote memory attestation where the authority might reside
outside of a local machine. For example, a straight-forward construction to keep
track of all locations of heap canaries and validate their integrity upon request
not only incurs noticeable performance overheads, but also requires a trusted
communication channel between the program and a remote verifier.

More critically, none of the prior works targeting heap overflow attacks pro-
vided provable security guarantees. Without a clear adversarial model it is hard
to judge the scope of the protection, and often the attackers, who are getting
more and more sophisticated, are still able to bypass many such mitigation
techniques.

Proving that a given protocol can resist all possible attacks within a cer-
tain well-defined class is the gold standard in modern cryptography. However,
protocols that are provably secure are rather rarely used in real systems either
because they commonly target extremely strong security definitions and hence
are too slow for practical use, or they rely on impractical assumptions about
attackers. Our work tries to bridge this gap in the context of remote attestation
by designing practical protocols with provable security guarantees against realis-
tic threats and satisfying practical system requirements. Our treatment utilizes
the formal provable-security approach of modern cryptography that works hand
in hand with applied systems expertise.

In this paper, we realized our theoretical findings as a working prototype
system that can mitigate, (still limited), heap overflow attacks in applications
running remotely outside of user’s local computer. Although the current imple-
mentation therefore focuses on protecting user’s programs running on the cloud
environment or firmware running outside of the main CPU, the proposed security
model is general enough to be useful for future works addressing other classes of
adversaries. We now discuss our focus and contributions in more detail.

Our Focus. Our focus is on the remote verification setting, motivated by the
widespread use of cloud computing. In our setting, two entities participate in
the protocol; a program that is potentially vulnerable, and a remote verifier who
attests the state of the program’s memory (e.g., heap). This setting is particularly
useful for verifying the integrity of software that is deployed and runs outside
of a local machine: a deployed program on the cloud is one example, and a
firmware running outside of the main CPU is another example. Note that if the
cloud is completely untrusted, we cannot guarantee security without relying on
secure hardware (and our focus is software-based solution only). Hence we need
to trust the cloud to a certain degree, but at the same time we want to avoid
changing the operating system there. Since we do not trust the program which
is potentially malicious, we create another entity, a wrapper, that is not directly
affected by the program, unless an adversary bypasses the protection boundary
provided by an operating system.

In practice, system software (e.g., browser or operating system) is vulner-
able to memory corruptions because it heavily relies on unsafe low-level pro-
gramming languages like C for either performance or compatibility reasons.
As we mentioned, we do not attempt to prevent entire classes of memory
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corruption attacks (e.g., use-after-free or bad-casting) nor exploitation techniques
(e.g., return-oriented programming (ROP)) with one system. We only consider
one particular type of memory corruption attack that overwrites a consecutive
region of memory (e.g., buffer) to compromise a control-sensitive data structure
(e.g., function pointer or virtual function table). However, we believe such mem-
ory corruptions are still very common (e.g., the recent GHOST vulnerability in
GLibc [4]), and become more important in the cloud setting where we have to
rely on the cloud provider.

Within this scope, our goal is to find solutions that (1) provide provable
security guarantees and (2) are practically efficient.

RMA Security Definition. Providing security guarantees is not possible
without having a well-defined security model. We start with defining a remote
memory attestation (RMA) protocol, whose goal is protecting the integrity of
a program’s data memory (e.g., heap). It is basically an interactive challenge-
response protocol between a prover and a verifier, which is initialized by a setup
algorithm that embeds a secret known to the verifier into a program’s memory.
The goal of the verifier is to detect memory corruptions.

Next we propose the first security model for RMA protocols. The defini-
tion is one of our main contributions. Our model captures various adversarial
capabilities (what attackers know and can do), reflecting real security threats.
We assume that an attacker can have some a-priori knowledge of the memory’s
contents (e.g., binary itself) and can learn parts of it, adaptively, over time.

Since we target a setting where the communication between the prover and
the verifier is over untrusted channels, we let the adversary observe the legit-
imate communication between the prover and the verifier. Moreover, we let it
impersonate either party and assume it can modify or substitute their messages
with those of its choice. To model malicious writes to the memory we allow the
attacker to tamper the memory. The goal of the attacker is to make the verifier
accept at a point where the memory is corrupted.

We note that on the one hand no security may be possible if an attacker’s
queries are unrestricted and on the other we would like to avoid hardwiring
in the model a particular set of restrictions on these queries. Accordingly we
state security with respect to abstract classes of functions that model the read
and write capabilities of the attackers. This allows us to keep the definition
very general. We leave it for the theorem statements that state the security of
particular protocols to specify these classes, and thus define the scope of attacks
the protocol defends against.

To prevent against the aforementioned GHOST attack [4] where a read (e.g.,
information leak) follows by write to the same location and leaves the key intact,
any solution in our setting needs to perform a periodic key refresh. Our protocol
definition and the security model take this into account. But of course, we do
not guarantee security if the attack happens within a refresh time window. This
is a common caveat with preventing timing attacks.

An RMA protocol proven to satisfy our security definition for spe-
cific read and write capabilities classes would guaranty security against any
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efficient attacker with such practical restrictions, under reasonable computa-
tional assumptions. This is in contrast to previous schemes, which were only
argued to protect against certain specific attacks, informally.

Provably-Secure RMA Constructions. The idea underlying our solutions
is simple and resembles the one behind stack or heap canaries. We embed secrets
throughout the memory and, for attestation, we verify that they are intact. This
is similar to how canaries are used, but for the setting where the verifier is remote
the ideas need to be adapted. A simple but illustrative example is the protocol
where the prover simply sends to the verifier the hash of all of the (concatenated)
canaries. Here, the attacker can replay this value after modifying the memory.
The following discussion illustrates further potential weaknesses of this protocol
uncovered when trying to derive provable security guarantees.

For clarity, instead of calling the secrets canaries, let us refer to the secrets
we embed in the memory as shares, i.e., we split a secret into multiple shares and
spread them out in memory. For now, let’s assume for simplicity that the shares
are embedded at equal intervals. Then an adversary who injects malicious code,
and hence writes a string that is at least one-block long, will over-write at least
one share, even if it knows the shares’ locations. Verification just checks whether
the original secret can be reconstructed and used in a simple challenge-response
protocol that prevents re-plays. For example, the verifier could send a random
challenge, and the prover would reply with the hash of the reconstructed secret
and the challenge. Note that the prover will run in a totally separate memory
space so the secrecy of the reconstructed key at time of verification is not an
issue.

We note that our solution does not readily apply for the stack because the
stack doesn’t have explicit unit or boundaries to statically place secret shares),
unlike the heap that has a unit (a page) of allocation that makes the key place-
ment efficient and easy.

The standard security of an n-out-of-n secret sharing scheme ensures that
unless the attacker reads all memory (and in this case no security can be ensured
anyway), the key is information-theoretically hidden. However, the adversary
could read and then tamper the memory while leaving the share intact. To
mitigate this, the periodic updates could re-randomize all shares, while keeping
the same secret. The size of the blocks and the frequency of the updates are the
parameters that particular applications could choose for the required tradeoff
between security and efficiency. In the ideal setting, we would refresh the shares
whenever the leakage of a share happens. However, since the occurrence of such
events is not always clear, the alternative solution of refreshing “often” enough
may lead to unreasonable overheads. In our current implementation, we keep the
frequency of updates a parameter and developers can simply incorporate timing
that reflect realistic assumptions on the adversary in our implementation.

Although the solution approach seems simple and sound, it turns out that
assessing its security and practicality raises numerous subtleties and complica-
tions, both from the systems and cryptographic points of view. For example,
our system can not fix the size of memory object, which naturally underutilizes
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the memory space (e.g., de-fragmentation). In our system, we support various
memory slots for allocation, from the smallest 8 byte objects incrementally to
over 100 MB, depending on the user’s configuration.

The obvious choice for producing the secrets to be embedded in the mem-
ory is to use an n-out-of-n secret sharing scheme as a building block for our
constructions. It turns out however, that the standard security of secret sharing
schemes is not sufficient to guarantee the security of the protocol. First, we have
to extend the security definition to take into account key updates. The attacker
should be able to access the whole memory as long as it does not do it in between
consecutive updates. The extended notion is known as proactive secret sharing
[20]. Also, for the proof we need the additional properties that modifying at least
one share implies changing a secret, and one extra property we discuss later. For-
tunately, all these properties are satisfied by a simple XOR-based secret sharing
scheme.

We show that combing the simple XOR-based secret sharing scheme (or any
generic secret sharing scheme with some extra properties we define) and the hash-
based challenge-response protocol yields a secure and efficient RMA protocol, for
attackers with restricted, but quite reasonable abilities to read and tamper the
memory. The proof we provide relies on the random oracle (RO) model [8]. Since
the RO is unsound [12] for security-critical applications it may be desirable to
have protocols which provably provide guarantees in the standard (RO devoid)
model.

An intuitively appealing solution is to employ some symmetric-key identi-
fication protocol, e.g., replying with a message authentication code (MAC) of
the random challenge, where the MAC is keyed with the reconstructed secret.
However, given the capabilities that we ascribe to realistic adversaries, a formal
proof would require a MAC secure in the presence of some leakage on and tam-
pering of the secret key. The latter property is also known as security against
related key attacks (RKA) [6]. Unfortunately, there are no suitable leakage and
tamper-resilient MACs for a wide class of leakage and tampering functions, as
the existing solutions, e.g. [5,10], only address specific algebraic classes of tam-
pering functions and are rather inefficient.

Perhaps unexpectedly, we consider a challenge response protocol based on
a public key encryption scheme – the verifier sends a random challenge and
expects an encryption of the challenge together with the (reconstructed) secret.
This solution requires that the public key of the verifier is stored so that it is
accessible by the prover, and cannot be tampered (otherwise we would need a
public-key scheme secure with respect to related public key attacks, and similarly
to the symmetric setting, there are no provably secure schemes wrt this property,
except for few works addressing a narrow class of tamper functions [7,38]).

To ensure non-malleability of the public key, our system separates the mem-
ory space of a potentially malicious program from its prover (e.g., different
processes), and store its public key in the prover’s memory space. Since the ver-
ification procedure is unidirectional (e.g., a prover accesses the program’s mem-
ory), our system can guarantee the non-malleability of the public key in practice
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(e.g., unless no remote memory overwriting or privilege escalation). This level of
security is afforded by deployed computational platforms (e.g. MMU commodity
processors).

It is natural to expect some form of non-malleability from the encryption
scheme. Otherwise, the attacker could modify a legitimate response for one chal-
lenge into another valid one for the same key and a new challenge. An IND-CCA
secure encryption such as Cramer Shoup [15] could work for us. We note how-
ever that IND-CCA secure is an overkill for our application since we do not need
to protect against arbitrary maulings of the ciphertext; instead, the attacker
only needs to produce a valid ciphertext for a particular message, known to
the verifier. We show that an encryption scheme secure against a weaker notion
of plaintext-checking attacks [32] is sufficient for us. Accordingly, we use the
“Short” Cramer-Shoup (SCS) scheme proposed and analyzed very recently by
Abdalla et al. [1]. This allows us to save communication one group element com-
pared to regular Cramer Shoup. We discuss that one can optimize further and
save an additional group element in the communication by slightly increasing
computation.

Implementation Results. To demonstrate the feasibility of RMA, we imple-
mented a prototype system that supports arbitrary programs without any modi-
fication (e.g., tested with popular software with a large codebase, such as Firefox,
Thunderbird and SPEC Benchmark). Our evaluation shows that the prototype
incurs very small performance overheads and detects heap-based memory cor-
ruptions with the remote verifier.

In a bit more detail, we implemented both, the hash- and encryption-based,
protocols. Interestingly, both protocols showed similar performance, despite the
latter one relying on public key operations, which are much slower than a hash
computation. This is because the significant part of the performance overhead
comes from the implementation of the custom memory allocator, side-effects of
memory fragmentation and network bandwidth, which all make the differences
in times of crypto operations insignificant.

Related Work. The works that is perhaps closest in spirit and application
domain to ours is by Francillon et al. [18] who address the problem of remote
device attestation. Their approach is also based on provable security, but consider
a significantly weaker model where the adversary not tamper or read parts of
the internal memory of the device. These are key features of the adversary that
we aim to defend against.

Canaries are random values placed throughout a stack or heap, which are
later checked by the kernel. Canary-based protection has been adopted to pre-
vent stack smashing [2]: e.g., ProPolice [17], StackGuard [14], StackGhost [19].
Similarly, canaries (or guard as a general form) have been used for heap protec-
tion, in particular metadata of heap [33,39] (e.g., double free): HeapShield [9] or
AddressSanitizer [34]. These solutions do not immediately work in our setting.
This is mainly because all canaries need to be sent and checked by the remote
verifier without leaking or without being compromised by an adversary. While
heavy solutions like employing secure channels (e.g. TLS) would help mitigate
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this problem, the resulting system would need to transfer large quantities of
data, making it unsuitable for practical use.

Our solutions could be viewed as a novel variant of “compact” cryptographic
canaries, suitable for remote setting and providing provable security guarantees
under precisely defined threat models.

Software-based attestation has been explored in various contexts: peripheral
firmware [16,23,25], embedded devices [13,24,36], or legacy software [35]. That
line of work, which falls under the generic idea of software based attestation is
different from ours in two main differences. First, the setting of firmware attes-
tation uses a different adversarial model. There, an adversary aims to tamper
with the firmware on a peripheral and still wants to convince an external verifier
that the firmware has not been tampered with. In its attack, the adversary has
complete access to the device prior to the execution of the attestation protocol;
the protocol is executed however without adversarial interference. Our model
considers an adversary who can glean only partial information on the state of
the memory prior to its attack, but who acts as man-in-the-middle during the
attestation protocol.

Challenge-response protocols are natural solutions in both situations. Since
we aim for solutions that admit rigorous security proofs we rely on primitives
with cryptographic guarantees. In contrast due to constraints imposed by the
application domain solutions employed peripheral attestation cannot afford to
rely on cryptographic primitives. Instead, constructions employ carefully crafted
check-sum functions where unforgeability heuristically relies on timing assump-
tions and lack of storage space on the device. Jacobsson and Johansson [22] show
that such assumptions can be grounded in the assumptions that RAM access is
faster than access to the secondary storage [22]. Our work is similar in its goals
with that of Armknecht et al. [3] who provide formal foundations for the area of
software attestation.

More recently, a handful of hardware-based (e.g., coprocessor or trusted chip)
attestation has been proposed as well: Flicker [29] and TrustVisor [28] using TPM,
and Haven using Intel SGX [21,30]. Our work differs in that we do not explicitly
rely on hardware assumptions and provides provable security guarantee.

Finally, a recent paper [26] addresses the problem of a virus detection from a
provable security perspective. The authors introduce the virus detection scheme
primitive that can be used to check if computer program has been infected with
a virus injecting malicious code. They describe a compiler, which outputs a pro-
tected version of the program that can run natively on the same machine. The
verification is triggered by an external verifier. Even though the considered prob-
lems and the basic idea of spreading the secret shares are similar, the treatment
and the results in [26] are quite different from ours. The major difference is that
the attacker in the security model of [26] is not allowed to learn any partial infor-
mation about the secret shares. Our security definition, in turn, does take partial
leakage of the secret into account. Their security definition, however, allows the
attacker to learn the contents of the registers during the attack. This is not a
threat in our setting since the computations happen within the trusted wrapper.
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Also, their solutions do not rely on the PKI, which is a plus. The other important
difference is that the proposal in [26] is mostly of theoretical interest (as they
rely on leakage-resilient encryption for which there are no efficient implementa-
tions), while our solution is quite efficient. The work [26] has additional results
about protection against tiny overwrites but that requires CPU modifications.

2 Notation

X
$← S denotes that X is selected uniformly at random from S. If A is a ran-

domized algorithm, then the notation X
$← A denotes that X is assigned the

outcome of the experiment of running A, possibly on some inputs. If A is deter-
ministic, we drop the dollar sign above the arrow. If X,Y are strings, then X‖Y
denotes the concatenation of X and Y . We write L :: a for the list obtained by
appending a to the list L and L[i, . . . , j] for the sublist of L between indexes i
and j. We write id for the identity function (the domain is usually clear from the
context) and write US for the uniform distribution on set S. If n is an integer
we write [n] for the set 1, 2, . . . , n. For an integer k, and a bit b, bk denotes the
string consisting of k consecutive “b” bits.

3 Remote Memory Attestation

Syntax. We start with defining the abstract functionality of remote memory
attestation (RMA) protocol.

Definition 1 (RMA Protocol). A remote memory attestation protocol is
defined by a tuple of algorithms (SS, Init, (MA,MV), Update, Extract) where:

– The setup algorithm SS takes as input a security parameter 1κ and outputs a
pair of public/secret keys (pk , sk). (SS is run by the verifier.) This output is
optional.

– The initialization algorithm Init takes as input a bitstring M (representing the
memory to be protected), a public key pk and the secret key sk and outputs a
bitstring Ms (that represents the protected memory), and a bitstring s (secret
information that one can use to certify the state of the memory).

– The pair of interactive algorithms (MA,MV), run by the prover and verifier
resp., form the attestation protocol. Algorithm MA takes as inputs the public
key pk and a bitstring Ms and the verifier takes as inputs the secret key sk
and secret s. The verifier outputs a bit, where 1 indicates acceptance, and 0
– rejection.

– The update algorithm Update takes as input a bitstring Ms and outputs a
bitstring Ms

′ (this is a “refreshed” protected memory). It can be ran by the
prover at any point in the execution.

– The Extract algorithm takes as input a bitstring Ms (representing a protected
memory) and outputs a bitstring M (represented the real memory protected
in Ms) and secret s. This is used in the analysis mostly, but also models how
the OS can read the memory.
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The correctness condition requires that for every (pk , sk) output by SS, every
M ∈ {0, 1}∗, and every (Ms , s) output by Init(M, pk , sk), the second party
in (MA(pk ,Ms), MV(sk , s)) returns 1 with probability 1. Also, Extract(Ms) =
(M, s′) for some s′ with probability 1. These conditions should hold even for an
arbitrary number of runs of Update protocol.

In practice the remote verifier initializes the wrapper with the secret before
being sent to the cloud. The wrapper later acts as the local prover to the remote
verifier. In practice the wrapper is a separate process that gets memory access
via ptrace mechanism.

RMA Security. We now formally define the security model for an RMA pro-
tocol, which is part of our main contributions.

We consider an attacker who can read the public key (if any), and can observe
the interactions between the prover and the verifier. The attacker works in two
stages. In the first stage of its attack, it can read arbitrary parts of the memory
and can over-write a part of the memory by injecting data of its choosing. In this
phase, the adversary can observe and interfere with the interaction between the
prover and the verifier. This is captured by giving the adversary access to the
oracles that execute the interactive RMA protocol; in particular, the adversary
can chose to observe a legitimate execution of the protocol by simply forwarding
the answers of one oracle to the other. Of course, the adversary can choose to
manipulate the conversation, or even supply inputs of its own choosing. We only
model a single session of the protocol as we do not expect parallel sessions to
be run in practice. Also, at any point, the attacker can request that the shares
of the secret get updated. In the second stage the adversary specifies how it
wants to alter the memory (where and what data it wants to over-write). The
memory is modified, one extra update is performed, and then the attacker can
continue its actions allowed in the first stage, with the exception that it is not
given the ability to read the memory anymore, and this is the reason we consider
two stages of the attacker. This captures the fact noted in the Introduction, that
security is only possible if the memory update procedure is performed in between
the read and write, which can be arbitrary and thus leave the secret intact (by
reading and over-writing it).

We say that the adversary wins if it makes the verifier accept in the second
stage, despite the memory being modified by the attacker. This captures the
idea that the verifier does not notice that the memory has been corrupted.

We observe that it is necessary to restrict the adversary’s abilities, for a
couple of reasons. First, as we mentioned in the Introduction, no security may
be possible if an attacker’s queries are unrestricted. For instance, the adversary
may read the whole memory in between the secret updates or it could read
a block and immediately over-write it maintaining intact the associated secret
share. Moreover, note that an adversary who can over-write memory bit by bit,
could eventually learn the whole secret by fixing each bit for both possible values,
one by one and then observing the outcome of the interaction between the prover
and the verifier. In short, no security is possible if we do not impose (reasonable)
restrictions on the adversary.
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Second, it seems unlikely that a unique solution suffices to protect against
a wide class of attacks and that different solutions would work for different
applications and classes of attacks. Yet, we would want to avoid providing a
diffrent security definition for each individual scenario.

Accordingly, we state security with respect to abstract classes of functions
that parametrize the read and write queries that model the legitimate read and
tamper requests the attacker can do. This allows our definition to be quite gen-
eral; we leave it to the theorem statements for particular protocols and applica-
tions to specify these classes and hence clarify the scope of attacks the protocol
prevents against.

Exp
rma-(L,T )
A,Π :

(pk , sk) ← SS

M ← A(pk)

(Ms , s) ← Init(M, pk , sk)

g ← ARead(·),Tamper(·),MA(pk,Ms ),MV(sk,s),Update

If g return ⊥
Ms ← Update(Ms)

Ms ← g (Ms)

ATamper(·),MA(pk ,Ms),MV(sk ,s)

Output 1 iff MV accepts in the 2nd stage
and at that point the first part of Extract(Ms) is not M .

Oracle Read(f):

if f return ⊥
otherwise return f(Ms)

Oracle Tamper(g):

if g return ⊥
Ms ← g(Ms)

Fig. 1. Game defining the security of the memory attestation scheme Π =
(SS, Init, (MA,MV),Update,Extract).

Definition 2 (RMA Scheme Security). Let L and T be two classes
of leakage and tampering functions. Consider an RMA protocol Π =
(SS, Init, (MA,MV),Update,Extract). We define its security via the experiment
Exprma-(L,T )

A,Π involving the adversary A which we present in Fig. 1.
We call Π secure wrt L and T if for every (possibly restricted) efficient adver-

sary A the probability that Exprma-(L,T )
A,Π returns 1 is negligible in the security

parameter.

The design of the above model is influenced directly by studying the practical
threats. In particular, reading memory to leak information has been a prerequi-
site pretty much to all attacks from ten years back. Taking the man-in-the-middle
attacks into account is motivated by the observation that even though we trust
the cloud provider, we do not necessarily trust the path between the provider and
the client, e.g., when using a cafe’s WiFi. We demand that the secure attestation
be done without employing secure channels.
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Remark. Turns out that the practical classes of read and write functions may
not describe the necessary restrictions by themselves. Thus one can further
restrict the adversaries, but again, this is done in the security statements. For
instance, security of our constructions will tolerate any attacker who can read
all but one “block” of the memory and can over-write any arbitrary part of the
memory as long as that part is longer than some minimum number of bits.

4 Building Blocks

Refreshable Secret Sharing Scheme. Our schemes rely on an n-out-of-n
secret sharing scheme where one needs all of the shares to reconstruct the secret;
any subset of n − 1 shares is independent from the secret. In addition to the stan-
dard property, we also require that it is possible to refresh shares in such a way that
all subsets of n − 1 shares, each obtained in between updates, are independent of
the secret. This property is known as proactive secret sharing [20]. In addition, we
require two more security properties which we describe later in this section.

Syntax. We first provide the syntax of the secret sharing schemes that we
consider.

Definition 3. A refreshable n-out-of-n secret sharing scheme is defined by algo-
rithms (KS,KR,SU) for sharing and reconstructing a secret, and for refreshing
the shares1. For simplicity we assume that the domain of secrets is {0, 1}κ (where
κ is the security parameter). The sharing algorithm KS takes a secret s and out-
puts a set (s1, s2, . . . , sn) of shares2. The reconstruction algorithm KR takes as
input a set of shares s1, s2, . . . , sn and returns a secret s. The update algorithm
SU takes as input a set of shares (s1, s2, . . . , sn) and returns the updated set
(s′

1, s
′
2, . . . , s

′
n), a new re-sharing of the same secret.

For correctness we demand that for any s ∈ {0, 1}κ and any (s1, s2, . . . , sn)
obtained via (s1, s2, . . . , sn) $← KS(s) it holds that KR((s1, s2, . . . , sn)) = s
and KR(SUi((s1, s2, . . . , sn)) = s with probability 1 for any integer i ≥
1, where SUi((s1, s2, . . . , sn)) denotes i consecutive invocations of SU as
SU(SU(. . . SU((s1, s2, . . . , sn)) . . .)).

Security. We require that the secret sharing scheme that we use satisfies three
security properties.

Secret Privacy. The most basic one, secret privacy for refreshable secret
sharing scheme (aka proactive secret sharing) guarantees that n − 1 shares do
not give the adversary any information about the secret, and this holds even for

1 We use the mnemonics KS,KR to indicate that we think of the secret as being some
cryptographic key.

2 We do not use the set notation for simplicity.
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an arbitrary number of updates to each set of shares. The formal definition is in
the full version [11].

Oblivious Reconstruction. We also require that the scheme enjoys oblivious
reconstruction. Intuitively, this demands that given an adversary who can read
and replace some of the shares, it is possible to determine at any point if the
value encoded in the shares is the same as the original value or not. This property
is related but is different from Verifiable Secret Sharing: the ability to tell that
the shares are consistent with some secret does not necessarily mean that one
can tell if transforming a set of shares to another (valid) one has changed or not
the underlying secret.

More formally, fix a secret s ∈ {0, 1}κ and let (s1, s2, . . . , sn) $← KS(s). Con-
sider an adversary who can intermitently issue two types of querries. On a query
i ∈ {1, . . . , n} the adversary receives si; on a query (i, v) ∈ ({1, 2, . . . , n}×{0, 1}κ

the value of si is set to v.
We require that there exists a “secret changed?” algorithm SC, formalized

in Fig. 2, which given the queries made by A and the answers it receives can
efficiently decide (with overwhelming probability) if the value of the secret that
is encoded is equal to the value of the original secret.

Exprec
A,Π :

s
$← A;L ← [ ]

{s1, s2, . . . , sn} ← KS(s)

AShareInfo(·)

b ← SC(L)

s ← KR(s1, s2, . . . , sn)

return 1 iff
(b = 1 and s = s ) or (b = 0 and s = s )

Oracle ShareInfo(·):
On input i ∈ {1, . . . , n}
L ← L :: (i, si)

return si

On input (i, v) ∈ {1, 2, . . . , n} × {0, 1}κ

L ← L :: (i, v)

si ← v

Fig. 2. Experiment defining the oblivious reconstruction property for secret sharing.

Share unpredictability. This property demands that for any secret (chosen
by the adversary) and any sharing of the secret, following an Update an adversary
cannot tamper (in any meaningful way) with any of the resulting fresh shares
in a way that does not alter the secret. This intuition is formalized using the
game Expunpred

A,Π in Fig. 3. First,the experiment samples a random secret. After
the adversary learns some (but not all) of the shares, the shares are refreshed,
and the adversary needs to tamper with at least one share. The adversary wins
if the secret that is shared stayed unchanged through the process. We say that
Π satisfies share unpredictability if for any adversary which calls the Read oracle
at most n − 1 times and the Tamper oracle at least once, the probability that
the experiment returns 1 is negligible.
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Expunpred
A,Π :

s ← {0, 1}κ

ARead(·)

(s1, s2, . . . , sn) ← SU(s1, s2, . . . , sn)

ATamper(·)

return s
?
= KS(s1, s2, . . . , sn)

Oracle Read(i)

return si

Oracle Tamper(i, v)

si ← v

Fig. 3. Game defining share unpredictability for for secret sharing. We demand that
A queries his Tamper at least once.

Secure Construction. Here we present a very simple n-out-of-n refreshable
secret-sharing scheme with oblivious reconstructability and argue its security.

Construction 41 (Refreshable Secret Sharing). We define the scheme
(KS,KR,SU) as follows.

– KS takes secret s ∈ {0, 1}κ, picks si
$← {0, 1}κ for 1 ≤ i ≤ n − 1, computes

sn ← s ⊕ s1 ⊕ . . . ⊕ sn−1

– KR on input (s1, . . . , sn) returns s1 ⊕ . . . ⊕ sn

– SU takes (s1, . . . , sn) and for 1 ≤ i ≤ n−1, computes ri
$← {0, 1}κ, si

$← si⊕ri.
Finally, sn ← sn ⊕ r1 ⊕ . . . ⊕ rn−1, and SU returns (s1, . . . , sn).

It is immediate to see that the above scheme is correct. The following theorem
states (information-theoretic) security. The proof is in the full version [11].

Theorem 1. The scheme ofConstruction 41 is a refreshable secret sharing scheme
with secret privacy, oblivious reconstructability and share unpredictability.

IND-PCA Secure Encryption. Our second construction uses a (labeled)
encryption scheme that satisfies indistinguishability under plaintext-checking
attacks (IND-PCA) [32]. One concrete scheme which satisfies IND-PCA security
is the “Short” Cramer-Shoup (SCS) scheme proposed by Abdalla et al. [1]. We
recall the primitive and the scheme in the full version [11]. The following result
about IND-PCA security of the SCS scheme is by Abdalla et al. [1].

Theorem 2. Under the DDH assumption on G and assuming that H is a tar-
get collision resistant hash function, the SCS scheme by Abdalla et al. [1] is
IND-PCA.

5 RMA Constructions

We are now ready to present two constructions of an RMA protocol for a lim-
ited, but quite practical class of attacks. The first construction combines a secret
sharing scheme with a hash function, and does not rely on public key cryptogra-
phy. The scheme is quite efficient and is secure in the random oracle model; the
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second construction uses a public key encryption scheme secure under plaintext
checking attacks.

Both construction share the same underlying idea. A secret is shared and the
resulting shares are placed in the memory. In our construction we assume that
shares are at equal distance – other options are possible provided that this place-
ment ensures that tampering with the memory (using the tampering functions
provided to the RMA adversary) does tamper with these protective shares. The
attestation protocol is challenge response: the verifier selects a random nonce and
sends it to the prover. Upon receiving the nonce, the prover collects the shares,
reconstructs the secret and uses it in a cryptographic operation; the verifier then
confirms that the secret used is the same that he holds.

In the first scheme, which we present below, the prover hashes the secret
together with the nonce and sends it to the verifier who checks consistency with
his locally stored secret by and the nonce he has sent.

5.1 Hash-Based RMA

Construction 51 (Hash-Based RMA). Fix a refreshable n-out-of-n secret
sharing scheme SSh = (KS,KR,SU). Let Divide be any function that on input
a bitstring of size greater than n breaks M into n consecutive substrings
(M1, . . . ,Mn). Let H : {0, 1}∗ → {0, 1}h be a hash function. These scheme
does not use asymmetric keys for the parties so below we omit them from the
description of the algorithms. We define the RMA protocol hash2rma(H) by the
algorithms (SS, Init, (MA,MV),Update, Extract) below:

– SS(1k) returns ε.
– Init on input M does

• s
$← {0, 1}κ

• (s1, . . . , sn) ← KS(n, s)
• (M1, . . . ,Mn) ← Divide(M)
• Return (M1‖s1‖ . . . ‖Mn‖sn, s).

– Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s ← KR(s1, . . . ,
sn) and returns (M, s).

– MV on input s picks l
$← {0, 1}l(κ) and sends l to MA

– MA on input Ms gets l from MV, calculates (M, s) ← Extract(Ms), and sends
back t = H(s||l).

– MV gets t from MA returns the result of the comparison t = H(s||l).
– Update on input Ms Ms as M1‖s1‖ . . . ‖Mn‖sn and returns SU(s1, . . . , sn).

The following theorem states the security guarantees the above construction
provides – the details of the proof are in the full version of the paper [11].

Theorem 3. Let SSh = (KS,KR,SU) be an n-out-of-n refreshable secret shar-
ing scheme. Let Divide be any function that on input a bitstring M , which
for simplicity we assume is nm bits, breaks M into n consecutive substrings
(M1, . . . ,Mn). Let hash2rma(H) = (SS, Init, (MA,MV), Update, Extract) be the
hash-based RMA protocol as per Construction 51.
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Let L be the class of functions that on inputs integers a, b such that 1 ≤ a <
b ≤ m, returns Ms [a . . . b]. Let T be the class of functions that on inputs an index
1 ≤ i ≤ n and bitstring c of size m + k returns Ms with its ith block changed
to c.

Let us call the adversary restricted if during all its queries to Read and Tamper
oracles between the Update queries, there is a substring of Ms of length at least
n, which has not been read, i.e., not returned by Read.

Then if SSh has secret privacy, oblivious reconstructability and share unpre-
dictability then hash2rma(H) is secure wrt L and T and the adversaries restricted
as above, in the random oracle model.

We remark that while our protocol descriptions and treatment assume that
the shares are embedded into the memory over equal intervals for simplicity, our
implementations use blocks of increasing size, for systems functionality purposes.
Our security analyses still apply though. This is because it is clear how the read
and tamper queries correspond to reading and tampering the shares, and in
addition, any tampering query to a memory part that has not been read must
change the secret.

We justify the restrictions in the security statement from the systems point of
view. We require that an attacker does not read the whole memory. This is rea-
sonable, as reading incorrect memory address results in segmentation fault (e.g.,
termination of the process). Given that 64-bit address of modern processors, it’s
unlikely that attackers infer the whole memory space.

Since our threat model is not arbitrary memory write: rather a consecutive
memory overrun like buffer overflow, it is natural to assume in this threat model
an attacker needs to over-write the boundary between the blocks.

Given that the memory randomization is a common defense (outside of our
model though), attackers should correctly identify the location of shares to over-
write (which is randomized), hence we do not model completely arbitrary writes.

5.2 Encryption-Based RMA

The construction is based on a similar idea as that underlying the hash-based
RMA protocol above. The difference is in the attestation and verification algo-
rithms. Instead of the hash, the prover computes and sends the encryption of
the secret currently encoded in the memory with the nonce sent by the verifier
as label.

Construction 52 (Encryption-Based RMA). Let SSh = (KS,KR,SU) and
Divide be as in Construction 51. Let Π = (KeyGen, Enc,Dec) be a labeled asym-
metric encryption scheme. The RMA scheme enc2rma(Π) is defined by

– SS(1κ) runs (pk , sk) $← KeyGen(1κ) and returns (pk , sk)
– Init is as in Construction 51.
– Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s ←

KR(s1, . . . , sn) and returns (M, s).
– MV on input s picks l

$← {0, 1}l(κ) and sends l to MA
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– MA on input Ms gets l from MV and does
• (M, s1, . . . , sn) ← Extract(Ms),
• C

$← Encl(s) and
• send C to the verifier.

– MV on input C calculates s′ ← Decl(C) and returns the result of s
?= s′.

– The Update algorithm is as in Construction 51.

The intuition behind security of the construction is as follows. The prover
sends the encrypted secret (for some label chosen by the verifier) to the veri-
fier; the goal of the adversary is to (eventually) create a new ciphertext of the
same secret under a new label received from the verifier. If this is possible, a
plaintext-checking oracle would allow to distinguish such an encryption from
the encryption of a different secret. The following proposition establishes the
security of the above construction. The proof is in [11].

Theorem 4. If SSh is a refreshable secret sharing scheme with secret
privacy, oblivious reconstructability and share unpredictability and Π =
(KeyGen, Enc,Dec) is an IND-PCA secure then enc2rma(Π) defined by Con-
struction 52 is a secure RMA scheme with respect to L, T and any efficient but
restricted adversary defined in Theorem 3.

Optimization. The above theorem establishes that we can instantiate an RMA
scheme using the SCS scheme that we presented in Sect. 4. It turns out that
we can further optimize the communication complexity of that protocol (where
each interaction requires the prover to send three group elements) by observing
that the verifier already has the plaintext that the ciphertext it receives should
contain. In this case, the prover does not have to send the second component
of the ciphertext (as this component can actually be recomputed by the verifier
using its secret key). For completeness, we give below the relevant algorithms of
the optimized scheme.

Construction 53 (SCS-Based RMA).

– SS(1κ) obtains G and (h, c, d), (x, a, b, a′, b′) by running KeyGenSCS(1κ).
– MV on input s picks l

$← {0, 1}l(κ) and sends l to MA
– MA on input Ms and (h, c, d) gets l from MV, obtains the shares of the secret

via (M, s1, . . . , sn) ← Extract(Ms), and samples random coins r ∈ [|G|] and
computes (u = gr, e = hr · m, v = (c · dα)r), where α = H(l, u, e). It sends
(u, v) to the server.

– MV on input its secret key (x, a, b, a′, b′) the challenge l and secret s oper-
ates as follows on input (u, v) from the prover and returns the result of the
comparison v = ua+αa′ · (ux)b+αb′

, where α = H(l, u, ux · s).

The following security statement follows directly from Theorems 4 and 2.

Theorem 5. If SSh is a refreshable secret sharing scheme with secret
privacy, oblivious reconstructability and share unpredictability, and Π =
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(KeyGen, Enc,Dec) is as per Construction 52 then the RMA protocol defined
by Construction 53 is a secure RMA scheme with respect to L, T and any effi-
cient but restricted adversary defined in Theorem 3, assuming the DDH problem
is hard in the underlying group and the hash is target collision-resistant.

6 Implementation and Evaluation

Our prototype can seamlessly enable the remote memory attestation in any
applications that are using standard libraries. At runtime, the prototype imple-
mentation interposes all memory allocations (malloc()) and deallocations
(free()) by incorporating LD PRELOAD when the application starts executing.
Before the application runs, our custom runtime pre-allocates memory regions
with varying sizes, and carefully insert key shares between the memory objects.

Specifically, we provide a simple wrapper program (called prover) which end
users use to perform all these operations. When requested, the prover launches
the program, and then inserts our custom library for memory allocations of the
target application. Before the program starts, the prover pre-allocates a list of
chuncked memory, starting from 8 bytes object to a few mega bytes (128 MB
by default) incrementally. In our current prototype, we pre-allocate N blocks
(configurable, 10 by default) per size (e.g., N 8-byte blocks up to 128 MB).

For attestation, the prover initiates the secrets with the public key provided,
performs the memory attestation of the program it launched, and communicates
with the remote verifier. To access the memory of a remote program, it attaches
to the program via ptrace interface in UNIX-like operating system, and runs
the protocol.

We evaluate a prototype of RMA in three aspects: (1) runtime overheads of
computation-oriented tasks such as SPEC benchmark; (2) worst case overheads
(e.g., launching an application) that end-user might be facing when using RMA;
(3) break-down of performance overheads and data transferred on the course of
remote attestation by using our prototype. We performed all experiments with
the prototype implementation of the encryption-based RMA. As we mentioned in
the Introduction, this protocol is not as efficient (in terms of crypto operations)
as the hash-based one, but it provides stronger security (no reliance on the

Component Lines of code

Verifier 298 lines of C

Prover 638 lines of C

Memory allocator 343 lines of C

Total 1,279 lines of code

Fig. 4. The complexity of RMA in terms of lines of code of each components, including
verifier, launcher and memory allocator.
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random oracle model), and performs equally well in the presence of system-
dependent overheads.

Micro-Benchmark. We evaluate a prototype of RMA by running the standard
SPEC CPU2006 integer benchmark suite. All benchmarks were run on Intel
Xeon CPU E7-4820 @2.00 GHz machine with 128 GB RAM, and the baseline
benchmark ran with standard libraries provided by Ubuntu 15.04 with Linux
3.19.0-16. As shown in Fig. 5, due to the simplicity of the implementation, RMA
incurs negligible performance overheads to SPEC benchmark programs: 3.1 % on
average, ranging from 0.0 % to 4.8 % depending on a SEPC benchmark program.
During the experiments, we found out that the significant part of performance
overheads comes from the implementation of the custom memory allocator and
the side-effects of memory fragmentation, thereby diluting the overheads related
to crypto operations. We believe that different types of applications requiring
frequent validation or updates of share keys might need better optimization of
crypto-related software stack. It is worth noting that our prototype never focuses
on optimization in any sort (e.g., using a coarse-grained, global lock to support
multi-threading) and the overall performance can be dramatically improved if
necessary.

Programs Baseline (s) RMA (s) Overhead (%)

400.perlbench 545 566 3.9%
401.bzip2 749 770 2.8%
403.gcc 521 537 3.1%
429.mcf 385 395 2.6%
445.gobmk 691 691 0.0%
456.hmmer 638 665 4.2%
458.sjeng 779 805 3.3%
462.libquantu 1,453 1,514 4.2%
464.h264ref 917 950 3.6%
471.omnetpp 540 547 1.3%
473.astar 606 635 4.8%
483.xalancbmk 361 373 3.3%

Fig. 5. Runtime overheads of SPEC benchmark programs with RMA.

Macro-Benchmark. To measure performance overhands that end-user might
be encountering when using RMA, we construct a macro-benchmark with three
applications for four different tasks; launching a web browser (Firefox), an email
client (Thunderbird), compressing and decompressing files (Tar). All experi-
ments were conducted on a laptop running Ubuntu 12.04 with standard glibc
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library (Ubuntu/Linaro 4.6.3-1ubuntu5), and we measured each benchmark ten
times, we provide the summary in [11]. i Note that launching application is the
worst-case scenario to RMA because it has to allocate memory space at pro-
gram’s startup and initiate all key shares before executing the program. Accord-
ing to our benchmark, it incurs acceptable performance overheads even in the
worst-cast construction, but we believe the latency that users actually feel is
minimal: 0.023 s in Firefox and 0.199 s in Thunderbird.

Performance Break-down. We also measured how long it takes to proceed
each stage of the RMA protocol with our prototype implementation. We mea-
sured the amount of data that needs to be transferred as well. In short, it is
feasible to implement the proposed RMA protocol in practice: our unoptimized
system incurs negligible performance overheads (the details are in [11]) and the
amount of messages between the prover and the verifier is minimal (e.g., 12 bytes
up to 396 bytes). According to our evaluation, we believe our RMA protocol can
be utilized in an efficient manner in practice.
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